试验变压器的输出电压波形为什么会畸变?如何改善?
电压波形畸变的可能原因是调压器和高压试验变压器的特性引起的,这是因为试验变压器在试品放电前实际上几乎是工作在空载状态,此时只有励磁电流i。通过变压器的一次侧。当变压器铁芯工作在饱和状态时,励磁电流是非正弦的,含有3次、5次等谐波分量,因而是尖顶波形。变压器的磁化特性曲线(Φ~i曲线),由于它的起始部分及饱和部分是非线性的,因此即使正弦电压作用到一次侧,其磁通为正弦的,但励磁电流仍为非正弦的。如果计及磁化曲线的磁滞回线,励磁电流波形将左右不对称。这一非正弦的励磁电流将流过调压器的漏抗,产生非正弦的电压降,因此在试验变压器的一次电压变为非正弦,其中含有调压器漏抗压降中的高次谐波(主要是3次谐波),于是试验变压器的高压输出电压就被畸变了。试验变压器的铁芯愈饱和(即电压愈接近额定值),调压器的漏抗愈大,波形畸变就愈严重。由于移圈式调压器漏抗大,因此当用它调压时,波形畸变颇为严重。实际运行表明,波形畸变在输出电压较低时也同样严重,这是因为此时移圈式调压器本身漏抗最大,使非正弦漏抗压降在试验变压器一次电压中占很大的比重。为了改善试验变压器的输出电压波形,可以在它的一次并联适当数值的电容器、滤波装置或在高压侧接电容电感串联谐振电路,如图F-3所示。
对100kV的试验变压器,在其一次侧及移圈调压器之间并联16μF的电容后,其电压波形可以得到很大的改善,基本上满足要求。对150kV、25kVA的试验变压器,对3次谐波可取C3=250μF,L3=4.58mH,对5次谐波,可取C5=110μF,L5=3.66mH,构成谐振电路,使谐波分量被低阻抗分路。